报告地点:行健楼学术活动室526
摘要:Let $\mathbb{N}$ be the set of all nonnegative integers.For $S\subseteq \mathbb{N}$ and $n\in \mathbb{N}$,let $R_S(n)$ denote the number of solutions of the equation $n=s+s'$,$s, s'\in S$, $s<s'$. In this talk, we will determine the structure of all sets$A$ and $B$ such that $A\cup B=\mathbb{N}\setminus\{r+mk:k\in\mathbb{N}\}$,$A\cap B=\emptyset$ and $R_{A}(n)=R_{B}(n)$ for every positive integer $n$, where $m$ and $r$ are two integers with $m\ge 2$ and $r\ge 0$. This is a joint work with Shi-Qiang Chen and Csaba Sandor.